
NASA-TM-109252

/:/7/1-:'./ <-d

".;j/
! f • , ': '-,,;,, - ; (

\

Artificial Intelligence Support
for Scientific Model-building

RICHARD M. KELLER

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

MS 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035-1000

{NASA-T_-I09252) ARTIFICIAL
INTELLIGENCE SUPPORT FOR SCIENTIFIC

_OOEL-_UILOING (NASA) 6 p

N94-12890

unclas

G3163 0185#43

Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-92-29

August_ 1992



To appear in Proc. 1992 AAAI Fall Symposium on Intelligent Scientific Computation 7 j"

Artificial Intelligence Support for Scientific Model-building

Richard M. Keller

Sterling Software
Artificial Intelligence Research Branch

NASA Ames Research Center

Mail Stop 269-2, Moffett Field, CA 94035-1000
Keller@ptolemy.arc.nasa.gov

Abstract

Scientific model-building can be a time-

intensive and painstaking process, often
involving the development of large and complex
computer programs. Despite the effort involved,
scientific models cannot easily be distributed
and shared with other scientists. In general,
implemented scientific models are complex,
idiosyncratic, and difficult for anyone but the
original scientific development team to
understand. We believe that artificial

intelligence techniques can facilitate both the
model-building and model-sharing process. In
this paper, we overview our effort to build a
scientific modeling software tool that aids the
scientist in developing and using models. This
tool includes an interactive intelligent
graphical interface, a high-level domain-
specific modeling language, a library of physics
equations and experimental datasets, and a
suite of data display facilities.

1. Introduction and Motivation: Software support

for scientific model-building

Model-building is an integral part of the scientific
enterprise. Scientists studying a particular
phenomenon develop theories in order to account for
novel observations and to make predictions about
expected behavior. To validate their theories,
scientists conduct in situ experiments whenever
possible. Often, however, it is not possible to carry

out direct experiments due to cost or other limiting
factors. In these cases, scientists build models of the

system under study and then test their theories
against those models. Sometimes these models take
the form of hardware (i.e., some sort of physical
analog to the actual system), but often the models
are expressed in software.

The construction of scientific software models can

be a time-intensive and painstaking process. Many
scientific models are written in terms of general-
purpose numeric programming languages, such as

FORTRAN, which have not been specially designed
for the modeling task. Implementing a model can
involve writing large and complex programs that
access multiple datasets and utilize numerous
different statistical and numeric processing
packages. Development time for large scientific
models may involve many months or years of effort.

For all the time and effort it takes to develop a
model, the user community for most scientific models
is limited to one -- the scientist who initially
designed the model. This is not to say that one
scientist has no use for another's models. On the

contrary, model-sharing is highly desirable because
it gives scientists the ability to "run experiments"
and test their theories using different models
without additional development overhead. The
ability to easily inspect, use, and modify another
scientist's models would be an extremely useful
adjunct to current model-building practice, and an
effective medium for communicating scientific ideas,
as well. Just as scientists read technical papers
describing theories, they should be able to inspect
and exercise the software models that were used in

validating those theories. Given the benefits to

model sharing, why is it practiced so infrequently?

There are numerous technological barriers to
scientific model sharing. Some of these barriers
include:

• Lack of comprehensibility: Scientific software
models are often sparsely commented and cryptic.
Even a program that is initially well-written and
commented will become fragmented over time.

• Wrong level of abstraction: A scientific model's
structure is not obvious from the low-level

program code. To understand an implemented
scientific model, a scientist must examine the

detailed code and attempt to infer high-level
scientific content from low-level programming
constructs.

• Implicit assumptions: Often important modeling
assumptions are left implicit in the low-level
code. These assumptions cannot be inspected or
easily modafied by new users.



Not surprisingly, some of these barriers are quite
similar to those cited as discouraging conventional

software sharing.

2. Objectives and Approach

Our primary research objective is to facilitate

scientific model-construction and model-sharing by

addressing the technological barriers described

above. Although computer models play a crucial

role in the conduct of science today, scientists lack

adequate software engineering tools to facilitate

the construction, maintenance, and reuse of modeling

software. We are investigating the development of

specialized software tools to ease the modeling

process.

In particular, we believe that the following

collection of advanced software techniques can

substantially enhance the modeling process. We

have begun to integrate these techniques in a

scientific modeling software tool that serves as an

aid to the scientist in developing and using models.

The techniques include:

• Interactive graphical interface: To enhance

comprehensibility and modifiability of

models. Visual and iconic representations

help the user to rapidly grasp the content of a
model.

• High-level modeling language: To provide an

appropriate level of abstraction for modeling

and introduce natural domain concepts that
are familiar to the scientist-user.

• Analysis facilities: To facilitate the

interpretation of experimental results through

the use of graphical plotting and statistical

techniques.

• Equation and dataset libraries: To facilitate the

sharing of standardized scientific equations
and datasets.

• Intelligent assistance: To provide guidance and

automate simple modeling steps. Artificial

Intelligence-based techniques, such as
constraint satisfaction, typed inheritance

hierarchies, and backward-chaining control
can reduce the amount of detail that the

scientist-user needs to track.

• Assumption maintenance facility: To maintain

explicit descriptions of modeling and data

assumptions underlying a model and

interdependencies among these assumptions.

At NASA Ames Research Center, we are building

a knowledge-based software environment that

employs the above techniques to make it easier for
scientists to construct, modify, and share scientific

models of physical systems. Examples of such

models include planetaryatmosphere models,

ecosystem models, and biochemical process models.
The SIGMA (Scientists' Intelligent Graphical

Modeling Assistant) system functions as an

intelligent assistant to the scientist. Rather than

construct models using a conventional programming

language, scientists can use SIGMA's graphical

interface to "program" visually using a high-level

data flow modeling language. The terms in this

modeling language involve scientific concepts (e.g.,

physical quantities, scientific equations, and

datasets) rather than general programming concepts

(e.g., arrays, loops, counters). SIGMA assists the
scientist during the model-building process and

checks the model for consistency and coherency as it

is being constructed. Then SIGMA automatically

translates the conceptual model into an executable

program, freeing the scientists from error-prone

implementation details.

In order to provide this level of automation, the

system must be given a significant amount of
knowledge about the scientific domain, as well as

general knowledge about programming. In our
system, knowledge is represented and stored in a

large knowledge base that contains information

about scientific equations, physical quantities and

constants, scientific units, numerical programming

methods, and scientific domain concepts and
relations. We have invested considerable time and

energy into representing scientific knowledge in a

form that is reusable across a variety of scientific

disciplines.

In general, our approach to providing modeling

assistance is extremely knowledge-intensive. We

believe that our system must have extensive

knowledge of the scientific problem under study in

order to interact intelligently and synergistically

with a scientist to create modeling software.

Without this shared understanding, the system

would have to rely on user guidance repeatedly

during the model-building process. Tedious "hand

holding" would likely increase user frustration and

decrease the utility of the system to an

unacceptable level. A beneficial side-effect of

utilizing domain knowledge is SIGMA's ability to

ensure the consistency of an evolving model and to

catch errors during the model-building process.



3. ExampleModelingTask

Togroundourwork,wehavebeenconductingacase
studyof a planetary atmosphere model developed

(in FORTRAN) by planetary scientist and

collaborator Christopher McKay. His model uses

scientific data from Voyager I's flyby of Saturn's
moon Titan to infer the thermal and radiative

structure of Titan's atmosphere. Our methodology

has been to "reverse-engineer" the Fortran model in

order to reconstruct the knowledge and methods used

by McKay to build such a model. Based on our

analysis, we are developing a general tool that will

ultimately enable atmospheric scientists to construct

an entire class of atmospheric models - including

McKay's Titan model -- using our automated

modeling assistant.

To avoid developing a system that is too narrowly

scoped, we also have been studying models in other

scientific domains. In this way, we increase

confidence that our efforts are general and

transferable to other scientific disciplines. For

example, we are in the process of extending our

knowledge base to support modeling activities

associated with the Forest-BGC ecosystem model.

This forest carbon-cycle and water-cycle model was

developed by Drs. S. Running and J. Coughlin at the

University of Montana, and is used by collaborator

Jennifer Dungan and other researchers at NASA.

Dungan's goal is to use SIGMA to build a generalized
version of Forest-BGC that can be used to

investigate regional-scale forest ecosystem

phenomena.

As an illustration of the type of model that can be

built with SIGMA, consider a fragment of McKay's

Titan model shown as a data flow graph in Figure 1.

The purpose of this fragment is to develop a profile
of Titan's atmosphere that describes the pressure,

temperature, and density of gases at various
altitudes above its surface. The major source of

relevant experimental data is the Voyager-I flyby

of Titan back in November 1980. As Voyager-I
reached the far side of Titan, it sent back radio

signals that passed through Titan's atmosphere and

then on to receiving stations on Earth. Due to the

density of gases in the atmosphere, the radio waves
were refracted slightly as they passed through the

atmosphere, resulting in a diminished signal picked

up on Earth. The amount of refraction was measured
at different altitudes above the surface. This

refractivity data serves as a starting point for

inducing the desired atmospheric profile.

In Figure 1, the lettered nodes represent scientific

quantities and the numbered nodes represent

scientific equations. The model computes the

temperature (T) at some altitude point above

Titan's surface based on input refractivity data (r)
from Voyager-I. In brief, the atmospheric profile is

determined as follows (see Figure 1). First, for each

atmospheric point profiled, the measured
refractivity data (r) is used to compute the number-

density (n) of the gases at that altitude. (The

number-density of a mixture of gases is defined to be

the number of molecules per volume of gas.) If the

identity and relative percentages of gases in a

fracflvlty number mass

ata set density density pressure temperature

r __n---_ Q-_O----_ Q-_P---_ _T

•, 4=/ I I --m°/kec_.lar i I, gravitational"force: .

.xlng ratio: .I., II r-- g

gas composition: _ I _lv_._.

gas rerracuvity: _-g : / _ su ace gray ty: _Jp
altitude: Z .j

where:

©n:
dz

0 p:nLfi_-- 0 T:n--- _
NO

Figure 1: D_ta flow graph representing fragment of s planetary atmospheric model.
Letters I,'__resent physical quantities. Numbered circles correspond to equation

application nodes.

3



mixture is known, the number-density can be
computed as a function of refractivity using Equation
1. Next, using the molecular weight of the various
gases in the mixture, the mass-density (p, or mass
per volume of mixture) can be computed from the
number-density using Equation 2. The hydrostatic
law can then be used to determine the pressure (P)
from the mass-density by numerically integrating

the weight of the atmosphere above each profile
point. Finally, the temperature (T) can be
determined from the mass-density and the pressure
by applying an equation of state, such as the ideal
gas law (Equation 5).

This data flow graph represents a kind of high-
level specification for a scientific model. The
specification is expressed at the level of abstraction
at which a physicist might describe the model, and
is far more comprehensible and reusable than the
corresponding FORTRAN code. The goal of the
SIGMA project is to enable scientists to construct and
manipulate models at this level of abstraction,
thereby facilitating modification and reuse.

4. Model-building with SIGMA

In the current version of SIGMA, we conceptualize
model-building as a kind of derivation process.
Given some initial configuration state of the
physical system being modelled, model-building can
be viewed as a process of deriving a set of unknown
physical variables from the known variables in
that initial state. The initial state takes the form
of a network structure of interrelated domain

entities, each of which has an associated set of

known and unknown quantities. The initial state
reflects the scientist's understanding of the relevant
entities and relations that are necessary to describe
the physical system being modelled. The process of
deriving unknown quantities is accomplished via a
series of computational transformations that bridge
the gap between the known and unknown variables.
Conceptually, each transformation takes as input a
set of variables and produces one or more variables
as output. Two kinds of computational
transformations currently supported in the system
are equations (algebraic and ordinary differential)
and Fortran subroutines.

The process of deriving unknown variables is
accomplished via a simple backchaining procedure.
In this backchaining process, the user first selects a

target physical variable they wish to calculate.
Then the system presents the user with a set of
transformations that can be used to compute the
desired variable. This set is determined based on

the system's semantic understanding of the

4

applicability of each transformation and its ability
to match the applicability conditions to the current
state. The user next selects one of the suggested
transformations, and the system checks to see
whether all the input variables required by this
transformation are already known. If so, the desired
output variable is computed using the selected
transformation; if not, the backchaining process
recurses for each of the unknown variables. During

this process, the graphical interface displays a
visualization of the current model as it is being
built. The visualization takes the form of a data

flow graph such as the one in Figure 1.

SIGMA is implemented in object-oriented
CommonLisp on a Sun SPARCstation 2. We are
currently implementing a Motif-based graphical
user interface to support interaction with SIGMA.
We intend to build up a complete visual
programming environment in which scientific
models can be constructed from equations
graphically, just as components are wired together
to build devices in a CAD/CAM tool.

Our longterm plan is to make SIGMA a viable tool
to support scientists involved in future NASA
planetary and earth-based activities, including
those related to the upcoming Huygens probe of
Titan's atmosphere, as well as the modeling
activities associated with data collected by the
Earth Observing System (EOS) network of
satellites.

5. Acknowledgments

I would like to acknowledge the effort of the
entire SIGMA team at NASA Ames, which includes

Michal Rimon, Aseem Das, David Thompson,
Michael Sims, Chris McKay, Jennifer Dungan,
Caitlin Griffith, and Yaron Gold. Special thanks to
Jennifer, who provided comments on an earlier draft
of this paper.

This research is co-funded by NASA's Office of
Space Science and Applications, and the Office of
Aeronautics and Space Technology.



6. Bibliography

Richard M. Keller and Michal Rimon, "A

Knowledge-based Software Development

Environment for Scientific Model-building",

submitted to 7th Knowledge-Based Software

Engineering Conference (KBSE-92), Tysons

Comer, VA, September 1992.

Richard M. Keller, "Knowledge-intensive Software

Design: Can too much knowledge be a burden?",

Proc. AAAI-92 Workshop on Automating

Software Design, San Jose, CA, July 1992.

J. L. Dungan and R. Keller, "Development of an

Advanced Software Tool for Ecosystem

Simulation Modelling", Abstracts supplement of

the Bulletin of the Ecological Society of America

,72(2) p.104, 1991.

Richard M Keller, "The Scientific Modeling
Assistant: An Interactive Scientific Model-

Building Tool", Proc. AAAI-91 Workshop on

Automating Software Design, Anaheim, CA, July
1991.

R.M. Keller, M.H. Sims, E. Podolak, and C.P.

McKay, "Constructing an Advanced Software

Tool for Planetary Atmospheric Modeling", Proc.

i-SAIRAS'90 (International Symposium on

Artificial Intelligence, Robotics and Automation

in Space), Kobe, Japan, November 1990.




